Skewness of Maximum Likelihood Estimators in the Weibull Censored Data
نویسندگان
چکیده
منابع مشابه
On the Bias of the Maximum Likelihood Estimators of Parameters of the Weibull Distribution
Usually, the parameters of a Weibull distribution are estimated by maximum likelihood estimation. To reduce the biases of the maximum likelihood estimators (MLEs) of two-parameter Weibull distributions, we propose analytic bias-corrected MLEs. Two other common estimators of Weibull distributions, least-squares estimators and percentiles estimators, are also introduced. Based on a comparison of ...
متن کاملThe asymptotic variance and skewness of maximum likelihood estimators using Maple †
In 1998, Bowman and Shenton introduced an asymptotic formula for the third central moment of a maximum likelihood estimator θ̂α of the parameter θα, a = 1, 2, . . . , s. From this moment, the asymptotic skewness can be set up using the standard deviation. Clearly, the skewness, measured in this way is location free, and scale free, so that shape is accounted for. The computer program is implemen...
متن کاملMaximum likelihood estimation in semiparametric regression models with censored data
Semiparametric regression models play a central role in formulating the effects of covariates on potentially censored failure times and in the joint modelling of incomplete repeated measures and failure times in longitudinal studies. The presence of infinite dimensional parameters poses considerable theoretical and computational challenges in the statistical analysis of such models. We present ...
متن کاملThe Convergence of Lossy Maximum Likelihood Estimators
Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.
متن کاملOrder theory and nonparametric maximum likelihood for interval censored data
Interval censored data arises when individuals can be subjected to periodic inspection at possibly random moments, and their status (e.g. failed or functioning) is ascertained at each inspection. We exploit the order theoretic properties of interval orders to develop a new language describing interval censored data. We show that inference can be based on the set Mof maximal antichains of the da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11111351